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HyperCheck: A Hardware-Assisted Integrity Monitor

Jiang Wang, Angelos Stavrou, and Anup Ghosh

Center for Secure Information Systems
George Mason University, VA, USA
{jwanga, astavrou, aghosh1}@gmu.edu

Abstract. Over the past few years, virtualization has been employed to environ-
ments ranging from densely populated cloud computing clusters to home desktop
computers. Security researchers embraced virtual machine monitors (VMMs) as
a new mechanism to guarantee deep isolation of untrusted software components.
Unfortunately, their widespread adoption promoted VMMs as a prime target for
attackers. In this paper, we present HyperCheck, a hardware-assisted tampering
detection framework designed to protect the integrity of VMMs and, for some
classes of attacks, the underlying operating system (OS). HyperCheck leverages
the CPU System Management Mode (SMM), present in x86 systems, to securely
generate and transmit the full state of the protected machine to an external server.
Using HyperCheck, we were able to ferret-out rootkits that targeted the integrity
of both the Xen hypervisor and traditional OSes. Moreover, HyperCheck is ro-
bust against attacks that aim to disable or block its operation. Our experimental
results show that HyperCheck can produce and communicate a scan of the state
of the protected software in less than 40ms.

Keywords: Hypervisor, Protection framework, System Management Mode

1 Introduction

Hypervisors1 have become the de facto standard in server consolidation because they
decrease the energy footprint and cost of management of modern computing clusters.
In addition, hypervisors are increasingly used as components to enforce system security
and resilience [22, 28, 16, 38, 21, 36, 31]. This widespread adoption of virtualization
has attracted the attention of the attackers towards VMM vulnerabilities. Indeed, re-
cently, there has been a surge in the reported vulnerabilities for commercial and open
source hypervisors [27]. Moreover, the number and nature [40, 6] of attacks against the
hypervisors are poised to grow.

This increasing attack trend has spurred research towards reducing the hypervisor
Trusted Code Base (TCB) of current commercial hypervisors [26]. Others developed
new specialized prototype hypervisors [36, 24]. However, having a small code base can
only limit the code exposure and thus the attack surface of the hypervisor – it cannot
provide strong guarantees about the code integrity of all the hypervisor components.

To address these limitations and to complement the existing protection mechanisms,
we designed a hardware-assisted tampering detection framework called HyperCheck.

1 Also called Virtual Machine Monitors VMMs
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HyperCheck is designed to protect the integrity of VMMs and, for some classes of
attacks, the underlying operating system (OS). To achieve that, HyperCheck harnesses
the CPU System Management Mode (SMM) which is present in all x86 commodity
systems to create a snapshot view of the current state of the CPU and memory registers
of the protected machine. This information is securely and verifiably transmitted using a
network card to a remote analysis server. Using that information, the analysis server can
identify any tampering by comparing the newly generated view with the one recorded
when the machine was initialized. If the two views do not match, a human operator is
notified. As shown in Figure 1, HyperCheck works at the BIOS level and can protect the
software above it. Our assumptions are that the attacker does not have physical access
to the machine and that the SMM BIOS is locked and thus cannot be altered during run.
We do not explicitly require trusted boot to initialize HyperCheck [23, 24]. However,
having a machine equipped with trusted boot can prevent attacks against HyperCheck
that simulate a hardware reset. 2

 

Fig. 1: HyperCheck can offer protec-
tion to services running above BIOS

Unlike previous work [30] that use spe-
cialized PCI hardware, we are able to acquire
a complete view of the target machine’s state
including the entire memory and CPU regis-
ters. In addition, our approach is able to thwart
attacks aimed at disabling, blocking, or even
taking over PCI devices. To evaluate the va-
lidity and performance of our approach, we
implemented two prototypes for HyperCheck.
HyperCheck-I uses QEMU [3] – a fully sys-
tem emulator – to emulate the PCI NIC, while
HyperCheck-II is based on an Intel e1000 physical NIC. Using our prototypes, we were
able to ferret-out rootkits aimed at Xen [11] hypervisor, Xen Domain 0, Linux, and Win-
dows. Our experimental results indicate that HyperCheck does not cause prohibitive
performance overhead requiring only a few milliseconds to completely transmit each
snapshot.

In summary, we make the following contributions:

1. Designed a novel hardware-assisted tampering detection framework that creates a
complete snapshot of the state of the system with commercial hardware and no
modification to the installed software.

2. Implemented two prototypes: one based on QEMU and the other based on the real
hardware. The latter has overhead in the order of few milliseconds. Using our pro-
totype, we demonstrate that we can successfully detect rootkits and code integrity
attacks against the Xen VMM, Xen Domain 0, Linux, and Windows.

2 Related work

Protecting software from integrity attacks using hardware-assisted techniques is not
new: researchers used a special-purpose PCI device to acquire the physical memory

2 As we discuss in Section 7, the same can be accomplished using a management interface.
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either for rootkit detection [30, 2] or for forensic purpose [8] in the past. The closest
system to our work is Copilot [30]. Copilot employed a special PCI device to poll the
physical memory of the host and send it to an admin station periodically. In Hyper-
Check, we do not require specialized hardware – only an out-of-the-box network card.
We also offer a complete view of the CPU state including its registers. Such view is
important to prevent copy-and-change attacks that can mislead the PCI card to scan the
wrong regions of memory and report erroneously that the system is not affected.

Another closely related work is HyperGuard [33]. Rutkowska et al. suggested using
SMM of the x86 CPU to monitor the integrity of the hypervisors. Although we have
similar goals as the HyperGuard project, the use of a network card allows us to out-
source the analysis of the state snapshot. This results in a drastic improvement in the
performance of the system reducing the system busy time from seconds to millisec-
onds. Due to its low performance overhead, HyperCheck can also monitors the code
and data of the privileged domain and underlying OSes. Another difference is that the
monitoring machine can be used to detect the DoS attacks to the SMM code.

DeepWatch [6] also offers detection of hypervisor rootkits, called virtualization
malware in DeepWatch, by using the embedded micro-controller(s) in the chipset. Deep-
Watch is signature based and used to detect rootkits relying on hardware-assisted virtu-
alization technologies such as Intel VT-d [18]. Contrary, HyperCheck performs anomaly
detection and thus can identify a larger class of software rootkits.

Flicker [23] uses a TPM based method to provide a minimum Trusted Code Base
(TCB), which can be used to detect the modification to the kernels. Flicker requires
advanced hardware features such as Dynamic Root of Trust Measurement (DRTM) and
late launch. In contrast, HyperCheck uses the static Platform Configuration Registers
(PCRs) to secure the booting process. In addition, by sending out the data, HyperCheck
has a lower overhead on the target machine compared to Flicker. To reduce the overhead
of Flicker, TrustVisor [24] has a small footprint hypervisor to perform some cryptogra-
phy operations. However, all the legacy applications should be ported for TrustVisor to
work. In addition, TrustVisor requires DRTM.

Another branch of research tries to improve the security of the hypervisor by adding
hooks [10] and enforcing security policies between virtual machines [34]. These meth-
ods are hypervisor specific and run as the same level as the hypervisor. HyperCheck
monitors the hypervisor state from a lower level and thus, is complementary to these
methods.

Furthermore, there is a plethora of research aimed towards protecting the Linux ker-
nel [2, 22, 16, 38, 21, 36, 31]. Baliga [2] et al. use a PCI device to acquire the memory
and automatically derive the kernel invariance. Currently, we discover the kernel invari-
ance manually but we could employ their techniques directly and without modifications.
Litty [22] et al. developed a technique to discover the address of key data structures that
are instantiated during run-time by relying on processor hardware and executable file
specifications. But they also rely on the integrity of the underlying hypervisors. Hyper-
Check first obtains the virtual addresses of those symbols through the symbol file, but
then calculates the physical addresses through CPU registers. Therefore, HyperCheck
can get the correct view of the system memory even if the underlying OS or hypervisor
is compromised and page tables are altered. Other existing research [38, 21, 36, 31],
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including work by Jiang et al., depend on the integrity of the hypervisor to protect the
kernel. Our work is complementary and can be employed as a meta-protection mecha-
nism to guard the integrity of OS-level defenses. A lot of recent work has gone towards
using SMM to generate efficient rootkits [39, 5, 15, 12]. These rootkits can be used
either to get root privilege or as a key-stroke loggers. We use SMM to offer integrity
protection by monitoring the state of hypervisors and operating systems.

3 Threat model

3.1 Background of System Management Mode

System Management Mode (SMM) was introduced in the Intel386 SL and Intel486 SL
processors. It became a standard IA-32 feature in the Pentium [20] processor. SMM is a
separate CPU mode besides the protected and real mode. The original purpose of SMM
was to provide a transparent mechanism for implementing platform specific functions
such as power management and system security. The processor enters SMM when the
external SMM interrupt pin (SMI#) is activated or a SMI is received from the advanced
programmable interrupt controller (APIC) [20].

In SMM, the processor switches to a separate address space, called system manage-
ment RAM (SMRAM). In addition, all hardware context of the currently running code
is saved in SMRAM. Then, the CPU, being in SMM, executes transparently code that
is usually a part of BIOS and resides in SMRAM. The SMRAM can be made inacces-
sible from other CPU operating modes. Therefore, it can act as trusted storage, sealed
from being accessed from any device or even the CPU (while not in SMM mode). In
HyperCheck, we modify the SMM code to execute our monitoring functions. This mod-
ification of SMM code can be integrated into the BIOS. Another way is to use a trust
boot mechanism or a management interface to upload the code to SMM (when SMRAM
is not locked) and then lock the SMRAM. Upon returning from SMM, the processor is
placed back into its state prior to enter SMM.

3.2 Attacker’s capabilities

We assume that the adversary has following capabilities: she is able to exploit vulner-
abilities in any software running in the machine after bootup. This includes the VMM
and all of its privileged components. For instance, the attacker can compromise a guest
domain and escape to the privileged domain. In Xen 3.0.3, pygrub [9] allows local users
with elevated privileges in the guest domain (Domain U) to execute arbitrary commands
in Domain 0 via a crafted grub.conf file [25]. Also, the attacker can modify the hypervi-
sor code or data using any known or zero-day attacks. For instance, the DMA attack [40]
hijacks a device driver to perform unauthorized DMA to the hypervisor’s code or data.

3.3 General Assumptions

The attacker cannot tamper with, or replace the installed PCI NIC with a malicious NIC
using the same driver interface. Also, if the SMM code is integrated with BIOS, we
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assume the SMRAM is properly setup by BIOS upon boot time. If the SMM code is not
included in the BIOS, it has to be reliably uploaded to the SMRAM during boot. This
can be done by either using trusted boot or using the management interface to bootstrap
the computer. In this case, to initialize the SMM code, a trusted bootstrap mechanism
has to be employed. The SMRAM is locked once it is properly set up. Once it is locked,
we assume it cannot be subverted by the attacker (an assumption supported by current
hardware). Attacks that attempt to modify the SMM code [41, 13, 14] are beyond the
scope of this paper.

3.4 In-scope Attacks

HyperCheck aims to detect the in-memory, Ring-0 level (hypervisor or general OS)
rootkits and rootkits in privileged domains of hypervisors. A rootkit is a set of programs
and code that allows a permanent or consistent, undetectable presence on a computer
[19]. One kind of rootkits only modifies the memory and/or registers and runs in the
kernel level. For example, the idt-hook rootkit [1] modifies the interrupt descriptor table
(IDT) in the memory and then gains the control of the complete system. An stealthier
version of the idt-hook rootkit could keep the original IDT unchanged by copying it to a
new location and altering it. Next, the attacker could change the IDTR register to point
to the new location. When it comes to the hypervisor level rootkit, there is yet another
kernel: the hypervisor kernel which runs underneath the operating system kernel. There
are existing methods to detect in-memory, kernel-level rootkits. We try to bridge this
gap by introducing HyperCheck.

3.5 Limitations

Currently, our analysis cannot protect against attacks that modify dynamic data. There
are two types of threats: modification to the dynamically generated function pointers
and return-oriented attacks. In these attacks, the control flow is redirected to memory
location controlled by the attacker. There are techniques to thwart such attacks: the non-
executable bit in new CPUs and Address Space Layout Randomization to name a few.
HyperCheck can leverage and integrate those techniques to provide full protection but
it was not part of our implementation in this paper. Having said that, we can still detect
the presence of the malfease if it tries to interfere with the VMM code or statically
defined function pointer.

4 System Architecture

HyperCheck is composed of three key components: the physical memory acquiring
module, the analysis module and the CPU register checking module. The memory ac-
quiring module reads the contents of the physical memory of the protected machine
and sends them to the analysis module. Then, the analysis module checks the memory
contents and verifies if anything is altered. The CPU register checking module reads
the registers and validates their integrity. The overall architecture of HyperCheck is



6 Jiang Wang, Angelos Stavrou, and Anup Ghosh
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(2) Register Checking module

Fig. 2: The architecture of HyperCheck

shown in Figure 2. Before introducing the key components, we first describe our design
principles.

Our main design principle is that HyperCheck should not rely on any software run-
ning on the machine except the boot loader. Since the software may be compromised,
one cannot trust even the hypervisor. Therefore, we use hardware – a PCI Ethernet card
– as a memory acquiring module and SMM to read the CPU registers. Usually, Ethernet
cards are PCI devices with bus master mode enabled and are able to read the physical
memory through DMA, which does not need help from CPU. SMM is an independent
operating mode and could be made inaccessible from protected mode which is what the
hypervisor and privileged domains run in.

Previous researchers only used PCI devices to read the physical memory. However,
CPU registers are also important because they define the location of active memory
used by the hypervisor or an OS kernel such as CR3 and IDTR registers. Without these
registers, the attacker can launch a copy-and-change attack. It means the attacker copies
the memory to a new location and modifies it. Then the attacker updates the register to
point to the new location. PCI devices cannot read the CPU registers, thereby failing to
detect this kind of attacks. By using SMM, HyperCheck can examine the registers and
report the suspicious modifications.

Furthermore, HyperCheck uses the CR3 register to translate the virtual addresses
used by the kernel to the physical addresses captured by the analysis module. Since the
acquiring module relies on the physical address to read the memory, HyperCheck needs
to find the physical addresses of the protected hypervisor and privileged domain. For
that purpose, HyperCheck checks both symbol files and CPU registers. From symbol
files, HyperCheck can read the virtual addresses of the target memory. Then, Hyper-
Check utilizes CPU registers to find the physical addresses corresponding to the vir-
tual ones. Previous systems only used the symbol files to read the virtual addresses
and calculate the physical addresses. Such systems can not detect attacks that modify
page tables and leave the original memory untouched. Another possible way to get the
physical addresses without using registers, is to scan the entire physical memory and
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use pattern matching to find all potential targets. However, this method is not scalable
or even efficient especially since hypervisors and operating system kernels have small
memory footprint.

4.1 Acquiring the physical memory

In general, there are two ways to acquire the physical memory: a software method
and a hardware one. The former uses the interface provided by the OS or the hyper-
visor to access the physical memory, such as /dev/kmem on Linux [7] or \Device
\PhysicalMemory on Windows [37]. This method relies on the integrity of the under-
lying operating system or the hypervisor. If the operating system or the hypervisor is
compromised, the malware may provide a false view of the physical memory. Moreover,
these interfaces to access memory can be disabled in future versions of the operating
systems. In contrast, the hardware method uses a PCI device [8, 30] or other kinds of
hardware [6]. The hardware method is more reliable because it depends less on the
integrity of the operating system or the hypervisor.

We choose the hardware method to read the physical memory. There are also multi-
ple options for the hardware components such as a PCI device, a FireWire bus device or
customized chipset. We selected to use a PCI device because it is the most commonly
used hardware. Moreover, existing commercial Ethernet cards need drivers to func-
tion. These drivers normally run in the operating system or the driver domain, which
are vulnerable to the attacks and may be compromised in our threat model. To avoid
this problem, HyperCheck puts these drivers into the SMM code. Since the SMRAM
memory is going to be locked after booting, it will not be modified by the attacker. In
addition, to prevent the attacker from using a malicious NIC driver in the OS to spoof
the SMM driver, we use a secret key. The key is obtained from the monitor machine
when the target machine is booting up and then stored in the SMRAM. The key then
is used as a random seed to selectively hash a small portion of the data to avoid data
replay attacks.

Another class of attacks is denial of service(DoS) attacks. Such attacks aim to stop
or disable the device. For instance, according to ACPI [17] specification, every PCI
device supports D3 state. This means that an ACPI-compatible device can be suspended
by an attacker who takes over the operating system: ACPI was designed to allow the
operating system to control the state of the devices. Of course, the OS is not a trusted
component in our threat model. Therefore, one possible attack is to selectively stop the
NIC without stopping any other hardware. To prevent ACPI DoS attacks, we need an
out-of-band mechanism to verify that the PCI card is not disabled. The remote server
that receives the state snapshots plays that role.

4.2 Translating the physical memory

In practice, there is a semantic gap between the physical memory that we monitor and
the virtual memory addressing used by the hypervisor. To translate the physical mem-
ory, the analysis module must be aware of the semantics of the physical memory layout
depends on the specific hypervisor we monitor. On the other hand, the acquiring module
may support many different analysis modules with no or small modifications.



8 Jiang Wang, Angelos Stavrou, and Anup Ghosh

The current analysis module depends on three properties of the kernel memory:
linear mapping, static nature and persistence. Linear mapping means the kernel (OS or
hypervisor) memory is linearly mapped to physical memory and the physical addresses
are fixed. For example, on x86 architecture, the virtual memory of Xen hypervisor is
linearly mapped into the physical memory. Therefore, in order to translate the physical
address to a given virtual address in Xen, we have to subtract the virtual address from an
offset. In addition, Domain 0 of Xen is also linear mapped to the physical memory. The
offset for Domain 0 is different on different machines but remains the same on a given
machine. Moreover, other operating system kernels, such as Windows [35], Linux [4]
or OpenBSD [12], also have this property when they are running directly on the real
hardware.

Static nature means the contents of the monitoring part of the hypervisor have to be
static. If the contents are changing, then there might be a time window between the CPU
changing the contents and our acquiring module reading them. This may result in in-
consistency for analysis and verification. Persistence property means the memory used
by hypervisors will not be swapped out to the hard disk. If the memory is swapped out,
then we cannot identify and match any content by only reading the physical memory.
We would have to read the swap file on the hard disk.

The current version of HyperCheck relies on these three properties (linear map-
ping, static nature and persistence ) to work correctly. Besides the Xen hypervisor, most
operating systems hold these three properties too.

4.3 Reading and verifying the CPU registers

Since the Ethernet card cannot read the CPU registers, we must use another method
to read them. Again, there are software and hardware based methods. For software
method, one could install a kernel module in the hypervisor and then it could obtain
registers by reading from the CPU directly. However, this is vulnerable to the rootk-
its, which can potentially modify the kernel module or replace it with a fake one. For
hardware method, one could use a chipset to obtain registers.

We choose to use SMM in x86 CPU which is similar to a hardware method. As we
mentioned earlier, SMM is a different CPU mode from the protected mode which the
hypervisor or the operating system reside in. When CPU switches to SMM, it saves the
register context in the SMRAM. The default SMRAM size is 64K Bytes beginning at a
base physical address in physical memory called the SMBASE. The SMBASE default
value following a hardware reset is 0x30000. The processor looks for the first instruction
of the SMI handler at the address [SMBASE + 0x8000]. It stores the processor’s state
in the area from [SMBASE + 0xFE00] to [SMBASE + 0xFFFF] [20]. In SMM, if SMI
handler issues rsm instruction, the processor will switch back to the previous mode
(usually it is protected mode). In addition, the SMI handler can still access I/O devices.
HyperCheck verifies the registers in SMM and reports the result by sending it via the
Ethernet card to the monitor machine. HyperCheck focuses on monitoring two registers:
IDTR and CR3. IDTR should never change after system initialization. For CR3, SMM
code can use it to translate the physical addresses of the hypervisor kernel code and
data. The offsets between physical addresses and virtual ones should never change as
we discussed in Section 4.2.
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5 Implementation

We implemented two prototypes for HyperCheck: HyperCheck-I is using QEMU full
system emulation while HyperCheck-II is running on a physical machine. We first
developed HyperCheck-I for quick prototyping and debugging. To measure the over-
all system performance, we implemented HyperCheck-II on non-virtualized hardware.
Both of them utilize the Intel e1000 Ethernet card as the acquiring module.

In HyperCheck-I, the target machine is as a virtual machine that uses QEMU. The
analysis module runs on the host operating system of QEMU. For the acquiring module,
we placed a small NIC driver into the SMM of the target machine. Using the driver, we
can program the NIC to transmit the contents of physical memory as an Ethernet frame.
On the monitoring machine, an analysis module receives the packet from the network.
The analysis module compares contents of the physical memory with the original (ini-
tial) versions. If a new snapshot of the memory contents is different from the original
one, the module will report the event to a system operation who can decide how to pro-
ceed. Moreover, another small program runs in the SMM and collects and sends out the
CPU registers also via the Ethernet card.

For HyperCheck-II, we used two physical machines: one as the target and the other
as the monitor. On the target machine, we installed Xen 3.1 natively and used the phys-
ical Intel e1000 Ethernet card as the acquiring module. Also, we modified the default
SMM code on the target machine to enable our system similarly to our QEMU imple-
mentation. The analysis module runs on the monitor machine and is the same as the one
in HyperCheck-I. HyperCheck-II is mainly used for performance measurement.

As we mentioned earlier, we used QEMU for HyperCheck-I. QEMU is suitable for
debugging potential implementation problems. However, it comes with two drawbacks.
First, the throughput of a QEMU network card is much lower than a real NIC device.
For our QEMU based prototype, the network card throughput is approximately 10MB/s,
although Gigabit Ethernet cards are common in practice. Second, the performance mea-
surement on QEMU may not reflect the real world performance. HyperCheck-II help
us overcome these problems.

5.1 Memory Acquiring module

The main task to implement the acquiring module is to port the e1000 network card
driver into SMM to scan the memory and send it out. Normally, SMM code is one part
of BIOS. Since we don’t have the source code of the BIOS, we used the method similar
to the one mentioned in [5] to modify the default SMM code. Basically, it writes the
SMM code in 16bit assembly and uses a user level program to open the SMRAM and
copy the assembly code to the SMRAM.

To overcome the limitations of [5], we divided the e1000 driver into two parts: ini-
tialization and data transfer. The initialization part is complex and very similar to the
Linux driver. The communication part is simpler and different from the Linux driver.
Therefore, we modified the existing Linux e1000 driver to initialize the network card
and only program the transferring part in assembly. The e1000 driver on Linux is
changed to only initialize the NIC but does not send out any packet. The assembly
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code is compiled to an ELF object file. Next, we wrote a small loader which can parse
the ELF object file and load the code and data to the SMM.

For this implementation, the NIC driver is ported to the SMM, the next step is
to modify the driver to scan the memory and send them out. HyperCheck uses two
transmission descriptors per packet, one for the header and the other for the data. The
content of the header should be predefined. Since the NIC is already initialized by
the OS, the driver in SMM has only to prepare the descriptor table and write it to the
Transmit Descriptor Tail (TDT) register of the NIC. The NIC will send the packet to the
monitoring machine using DMA. The NIC driver in SMM prepares the header data and
let the descriptor point to this header. For the payload, the descriptor is directly pointed
to the address of the memory that needs to be scanned. In addition, e1000 NIC supports
CRC offloading.

To prevent replay attacks, a secret key is transferred from the monitor machine to
the target machine upon booting. The key is used to create a random seed to selectively
hash the data. If we hash the entire data stream, the performance impact may be high.
To reduce the overhead, we use the secret key as a seed to generate one big random
number used for one-time pad encryption and another set of serial random numbers.
The serial of random numbers are used as the indexes of the positions of the memory
being scanned. Then, the content at these positions are XORed with the one-time pad
with the same length before starting NIC DMA. After the transmission is done, the
memory content is XORed again to restore the original value.

The NIC driver also checks the loop-back setting of the device before sending the
packet. To further guarantee the data integrity ,the SMM NIC driver stays in the SMM
until all the packet is written to the internal FIFO of the NIC, and add 64KB more data
to the end to flush the internal FIFO of the NIC. Therefore, the attacker cannot use loop-
back mode to get the secret key or peek into the internal NIC buffer through debugging
registers of the NIC.

5.2 Analysis module

On the monitoring machine, a dedicated network card is connected with the acquiring
module. The operating system of the monitoring machine was CentOS 5.3. We run
tcpdump to filter the packets from the acquiring module; the output of tcpdump is
sent to the analysis module. The analysis module written in a Perl script reads the input
and checks for any anomalies. The analysis module first recovers the contents using the
same secret key. After that, it compares every two consecutive memory snapshots bit by
bit. If they are different, the analysis module outputs an alert on the console, as we are
checking the persistent and static portion of the hypervisor memory. The administrator
can then decide whether it is a normal update of the hypervisor or an intrusion. Note that
during the system boot time, the contents of those control data and code are changing.

Currently, the analysis module can check the integrity of the control data and code.
The control data includes IDT table, hypercall table and exception table of Xen, and
the code is the code part of Xen hypervisor. To find out the physical address of these
control tables, we use Xen.map symbol file. First, we find the virtual addresses of
idt_table, hypercall_table and exception table. The physical address of these
symbols is virtual address− 0xff00,0000 on x86-32 architecture with PAE. The address
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of Xen hypervisor code is between _stext and _etext. HyperCheck can also mon-
itor the control data and codes of Domain 0. This includes the system call table and
the code part of Domain 0 (a modified Linux 2.6.18 kernel). The kernel of Domain 0
is also linearly mapped to the physical memory. We use a kernel module running in
Domain 0 to compute the exact offset. On our test machine, the offset is 0x83000000.
Note that, there is no IDT table for Domain 0, because there is only one such table in
the hypervisor. We input these parameters to the acquiring module to improve the scan
efficiency.

Note that these control tables are critical to system integrity. If their contents are
modified by any malware, it can potentially run arbitrary code in the hypervisor level,
i.e. the most privileged level. An antivirus software or intrusion detection system that
runs in Domain 0 is difficult or unable to detect this hypervisor level malware because
they rely on the hypervisor to provide the correct information. If the hypervisor itself is
compromised, it may provide fake information to hide the malware. The checking for
the code part of the hypervisor enables HyperCheck to detect the attacks which do not
modify the control table but just modify the code invoked by those tables.

5.3 CPU register checking module

HyperCheck uses SMM code to acquire and verify CPU registers. In a product, the SMI
handler should be integrated into BIOS. Or it can be set up during the system boot time.
This requires the bootstrap to be protected by some trusted bootstrap mechanism. In
addition, most chipsets provide a function to lock the SMRAM. Once it is locked, SMM
handler cannot be changed until reboot. Therefore, the SMRAM should be locked once
it is set up. In our prototype, we used the method mentioned in Section 5.1 to modify
the default SMM code.

There are three steps for CPU register checking: 1) triggering SMI to enter SMM;
2) checking the registers in SMM; 3) reporting the result. SMI is a hardware interrupt
and can only be triggered by hardware. Normally, I/O Controller Hub (ICH), also called
Southbridge, defines the events to trigger SMI. For HyperCheck-I, the QEMU emulates
Intel 82371SB chip as the Southbridge. It supports some device idle events to generate
SMI. SMI is often used for power management, and Southbridge provides some timers
to monitor the state of a device. If that device remains idle for a long time, it will trigger
SMI to turn off that device. The resolutions of these timers are typically one second.
However, on different motherboard, the method to generate the SMI may be different.
Therefore, we employ the Ethernet card to trigger the SMI event.

For the register checking, HyperCheck monitors IDTR and CR3 registers. The con-
tents of IDTR should never change after system boot. The SMM code just reads this
register by sidt instruction. HyperCheck uses CR3 to find out the physical addresses
of hypervisor kernel code and data given their virtual addresses. Essentially, it walks
through all the page tables as a hardware Memory Management Unit (MMU) does.
Note that offset between the virtual address and the physical address of hypervisor ker-
nel code and data should never change. For example, it is 0xff000000 for Xen 32bit
with PAE. The Domain 0 has the same property. The SMM code requires the virtual
address range as the input (this can be obtained through the symbol file and send to the
SMM in the boot time) and afterwards check their physical addresses. If any physical
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address is not equal to virtual address – offset, this signifies a possible attack. The SMM
code reports the result of this checking via the Ethernet card. The assembly code of it
is just 67 LOC.

The SMM code uses the Ethernet card to report the result. Without the Ethernet
card, it is difficult to send the report reliably without stopping the whole system. For
example, the SMM code could write the result to a fixed address of physical memory.
But according to our threat model, the attacker has access to that physical memory and
can easily modify the result. Or the SMM code could write it to the hard disk. Again,
this can be altered by the attacker too. Since security cannot relies on the obscurity, the
only way left without a network card is to stay in the SMM mode and put the warning
message on the screen. This is reliable, but the system in the protected mode becomes
completely frozen. Sometimes, it may not be desirable, and could be abused by the
attacker to launch Denial of Service attacks.

5.4 HyperCheck-II

In HyperCheck-II, the main difference from HyperCheck-I is the acquiring module. We
ported the SMM NIC driver from QEMU to a physical machine. Both of them have
the same model of the NIC: 82540EM Gigabit Ethernet card. However, the SMM NIC
driver from the QEMU VM does not work on the physical machine. And it took one of
the author one week to debug the problem. Finally, we find out that the main difference
between a QEMU VM and the physical machine (Dell Optiplex GX 260) is that the
NIC can access the SMRAM in a QEMU VM while it cannot on the physical machine.
For HyperCheck-I SMM NIC driver, the TX descriptor is stored in the SMRAM and it
works well. For HyperCheck-II, the NIC cannot read the TX descriptor in the SMRAM
and therefore does not transmit any data.

To solve this problem, we reserved a portion of physical memory by adding a boot
parameter: mem=500M to the Xen hypervisor or Linux kernel. Since the total physical
memory on the physical machine is 512MB, we reserved 12MB for HyperCheck by
using mem parameter. This 12MB is used to store the data used by SMM NIC and
the TX descriptor ring. We also modified the loader to be a kernel module; it calls
ioremap() to map the physical memory to a virtual address and load the data there.
In a product, the TX descriptor ring should be prepared every time by the SMM code
before transmitting the packet. In our prototype, since we don’t have the source code of
the BIOS, we used the loader to load the TX descriptor.

Finally, we built a debugging interface for the SMM code on the physical machine.
We use the reserved physical memory to pass the information between the SMM code
and the normal OS. This interface is also used to measure the performance of the SMM
code as we will discuss in Section 6.

6 Evaluation

To validate the correct operation of HyperCheck, we first verified the properties that
need to hold for us to be able to protect the underlying code as we discussed in Sec-
tion 4.2. Then, we tested the detection for hypervisor rootkits and measured the opera-
tional overhead of our approach. We have worked on two testbeds: testbed 1 is mainly
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used for HyperCheck-I and also as the monitor machine for HyperCheck-II. Testbed 2
uses HyperCheck-II to produce the plotted performance overhead on the real hardware.
Testbed 1 was equipped with a Dell Precision 690 with 8GB RAM and one 3.0GHz
Intel Xeon CPU with two cores. The host operating system was CentOS 5.3 64bit. The
QEMU version was 0.10.2 (without kqemu). The Xen version was 3.3.1 and Domain
0 was CentOS 5.3 32bit with PAE. Testbed 2 was a Dell Optiplex GX 260 with one
2.0GHz Intel Pentium 4 CPU and 512MB memory. Xen 3.1 and Linux 2.6.18 was in-
stalled on the physical machine and the Domain 0 is CentOS 5.4.

6.1 Verifying the static property

An important assumption is that the control data and respective code are statically
mapped into the physical memory. We used a monitoring module designed to detect
legitimate control data and code modifications throughout the experiments. This en-
abled us to test our approach against data changes and self-modifying code in the Xen
hypervisor and Domain 0. We also tested the static properties of Linux 2.6 and Win-
dows XP 32bit kernels. In all these tests, the hypervisor and the operating systems are
booted into a minimal state. The symbols used in the experiments are shown in Table 1.
During the tests, we found out that during boot the control data and the code changes.
For example, the physical memory of IDT is all 0 when the system first boots up. But
after several seconds, it becomes non-zero and static. The reason is that the IDT table
is initialized later in the boot process.

Table 1: Symbols for Xen hypervisor, Domain 0, Linux and Windows

System Symbol Use
idt table Hypervisor’s Interrupt Descriptor Table
hypercall table Hypervisor’s Hypercall Table

Xen exception table Hypervisor’s Exception Table
stext Beginning of hypervisor code
etext End of hypervisor code

sys call table Domain 0’s System Call Table
Dom0 text Beginning of Domain 0’s kernel code

etext End of Domain 0’s kernel code
idt table Kernel’s Interrupt Descriptor Table

Linux sys call table kernel’s System Call Table
text Beginning of kernel code
etext End of kernel code

Windows PCR→idt Kernel’s Interrupt Descriptor Table
KiServiceTable Kernel’s System Call Table

6.2 Detection

To verify whether HyperCheck can detect attacks against the hypervisor, we imple-
mented DMA attacks [40] on Xen hypervisor and then tested HyperCheck-I’s response
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on testbed 1. We ported the HDD DMA attacks to modify the Xen hypervisor and Do-
main 0. There are four attacks to Xen hypervisor and two attacks to Domain 0. We also
modified the pcnet network card in QEMU to perform the DMA attack from the hard-
ware directly. The modified pcnet NIC is used to attack Linux and Windows operating
systems. There are three attacks to Linux 2.6.18 kernel and two attacks to Windows
XP SP2 kernel, each targeting one control table or the code. They can modify the IDT
table and other tables of the kernel. HyperCheck-I correctly detected all these attacks
by reporting the contents of memory in the target machine are changed.

6.3 Monitoring overhead

!

"!

#!

$!

%!

&!!

&"!

&#!

& ' ( ) * && &' &(
!"#$%& '()%* + ,-&%' .

/(
0
%
*0

(11
(2
3
45

6
#-
#1
%'
.

 

Fig. 3: Network overhead for variable
packet size.

!

"!!!

#!!!

$!!!

%!!!

&!!!

"! &! "!! "&! #!!

!"#" $%&' ()*+

,%
-
'
(-

%..
%/
0
12

3
45
4.
'$
+

 
Fig. 4: Network overhead for variable data
size.

The primary source of overhead is coming from the transmission of the memory
contents to the external monitoring machine. In addition, to ensure the memory con-
tents have not been tampered with, HyperCheck needs to remain in SMM and wait until
the NIC finished. Otherwise, the attacker may control the OS and modify the memory
contents or the transmit descriptor in the main memory while transmitting. Initially,
we measured the time to transmit a single packet varying its payload size. The packet
flushed out when the Transmit Descriptor Head register (TDH) is equal to Transmit
Descriptor Tail register (TDT). We calculated the elapsed time using the rdtsc in-
struction to read the time stamp before and after each operation. As expected, the time
linearly increases as the size of the packet increases.

Next, we measured the bandwidth by using different packet sizes to send out a fixed
amount of data: 2881 KB memory (the size of Xen code plus Domain 0 code). The result
is depicted in the Figure 3: when the packet size is less than 7 KB, the time required
to send the data similar to a constant value. When the packet size becomes 8KB, the
overhead increases dramatically and it remains high. The reason is that the internal NIC
transfer FIFO is 16KB. Therefore, when the packet size becomes 8KB or larger, the
NIC cannot hold two packets in the FIFO at the same time and this introduces delay.
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Fig. 5: Overhead of the operations in SMM

Since HyperCheck can be used to monitor different sized hypervisors and OSes,
we measured the time required to send different amount of data and the results are in
Figure 4. In this set of experiments, we use 7KB as the packet size since it introduced
shortest delay in our testbed. We can see that the time also nearly linearly increased with
the amount of memory. In addition to PCI scanning, HyperCheck also triggers SMI
interrupt every one second and checks the registers in SMM. To measure the overall
overhead of entering SMM, executing SMM code and return from SMM, we wrote a
kernel module running in Domain 0.

The tests were conducted on testbed 2 (HyperCheck-II) and each test is repeated
many times. Here we present the average of the results. The overall time is composed
of four parts. First, the time taken to XOR the data with the secret key. Second, the time
to access the memory. Third, the time to configure the card and switch from protected
mode to SMM and back. Finally, the time to send out the data through the NIC. To find
out how much time was spent in each part, we wrote two more test programs. One is a
dummy SMM code which does nothing but just returns from SMM to CPU protected
mode. The other one does not access the main memory but just use the registers to sim-
ulate the verification of IDTR and CR3. Then we tested the running time for these two
SMM codes. From the first one, we can get the time for switching between protected
mode and SMM and then switch back. From the second one, we can get the time for
the CPU computation part of the verification of IDTR and CR3.

The results are presented in Figure 5. The most of the time is spent in sending the
data, which is 73 Million cycles. Next is the time to accessing the main memory : 5.28
Million cycles. Others took a very small portion. The total time is 80 Million cycles.
Since the CPU of the testbed 2 is 2 GHz. Therefore, the SMM code consumes 4.0% of
the CPU cycles, and takes 40 ms.

We also measured the code size of our SMM code, which is just about 300 Bytes.
On the monitor machine, the overhead for reading the memory contents and comparing
them with previous state took 230 ms, including 49 ms for only comparing the data.
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Fig. 6: Overhead of the XOR data in SMM

Note it is possible to reduce the time for reading the memory contents from the file, if
we use pipe or other memory sharing based communication between tcpdump and the
perl script.

Execution Time(ms)
Code base Size(MB) HC SMM TPM

Linux 2.0 31 203 1022
Xen+Dom0 2.7 40 274 >1022
Window XP 1.8 28 183 > 972
Hyper-V 2.4 36 244 >1022
VMWare ESXi 2.2 33 223 >1022

Table 2: Time overhead of HyperCheck and other methods

In contrast, previous research suggests using SMM to read the memory and hashing
it on the target machine. We call this SMM only method. To compare our approach with
SMM only method, we wrote a program to XOR the memory in SMM with different
sizes. The result is shown in Figure 6.

The time for XOR data is linearly increased with the amount of data and typically
uses hundreds of Million CPU cycles. Also, we compare our approach with a TPM
based approach [23] which can also be used to monitor the integrity of the kernels. The
result is shown in the Table 2. HC stands for HyperCheck. We can see that the overhead
of HyperCheck is one magnitude lower than SMM-only and TPM based method. For
SMM-only, it has to hash the entire data to check its integrity, while HyperCheck only
hashes a random portion of the data and then sends the entire data out using an Ethernet
card. For TPM based method, the most expensive operation is TPM quote, which alone
took 972 ms. Note that the test machine of TPM based method is better than our testbed
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Memory Registers Overhead

HyperCheck x x Low
SMM x x High
PCI x Low
TPM x x High

Table 3: Comparison between HyperCheck and other methods

2. An overall comparison between HyperCheck and other methods is shown in Table 3.
We can see that only HyperCheck can monitor both memory and registers with low
overhead.

7 Security Analysis & Limitations

HyperCheck aims to detect the modifications to the control data and the codes of the
hypervisors or OS kernels. These kinds of attacks are realistic and have a significant
impact on the system. HyperCheck can detect these attacks by using an Ethernet card
to read the physical memory via DMA and then analyze it. For example, if the attack-
ers control the hypervisor and make some modifications, HyperCheck can detect that
change by reading the physical memory directly and compare it with previous pristine
value.

In addition, HyperCheck also uses SMM to monitor CPU registers, which provides
further protection. Some previous research works only rely on the symbol table in the
symbol file to find the physical address of the kernel code and data. Nonetheless, there
is no binding between the addresses in the symbol table and the actual physical address
of these symbols [22]. For example, one potential attack is to modify the IDTR register
of CPU to point to another address. Then the malware can modify the new IDT table,
keeping the old one untouched. Another potential attack is to keep the IDTR register
untouched, but modify the page tables of the kernel so that the virtual address in the
IDTR will actually point to a different physical address. HyperCheck can detect these
cases by checking CPU registers in SMM. In SMM, HyperCheck read the content of
IDTR and CR3 registers used by the operating system. IDTR should never change after
booting. If it changed, SMM will send a warning through the Ethernet card to the mon-
itor machine. From CR3, HyperCheck can find the actual physical address given the
virtual ones. The offset between the virtual addresses and the physical addresses should
be static. If some offsets changed, HyperCheck will generate a warning too. Moreover,
PCI devices including the Ethernet card alone can be cheated to get a different view of
the physical memory [32]. With SMM, we could avoid this problem by checking the
corresponding settings in SMM.

The network card driver of HyperCheck is put into the SMM code to avoid ma-
licious modifications. Also, to prevent replay attacks, we use a key to hash a portion
of the data randomly and then send them out to the analysis module. Since the key is
private and locked in the SMRAM, the attacker cannot get it and cannot generate the
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same hash. Attacker can still try to disable the Ethernet card or the SMM code, but we
can detect it through an out-of-band monitor, such as Dell remote access controller.

In addition, the attacker may try to launch a fake reboot attack to get a private
key from the monitor machine. It can mimic the SMM NIC driver and send a request
for a new key. For this event, we have two options: first, we could use Trusted Platform
Module (TPM) based remote attestation to verify the running state of the target machine
[23]. We only need to verify whether the OS has been started or not. If it is already
started, the monitor machine should refuse to send the key. If the target machine does
not have a TPM, the second method is to send another reliable reboot signal to the target
machine when it asks for the key to make sure the SMM code is running.

However, HyperCheck also has its limitations. It cannot detect the changes which
happen between the two consecutive memory and register scans. Although the time
window between the scans is just one second in the current prototype, malware can still
potentially make some changes in the time interval and restore it before the next scan.
To address this problem, we could randomize the scan interval to increase the chances
for detection. In addition, we could use high bandwidth devices, such as PCI Express,
which is able to reach 5GT/s transfer rate [29], to minimize the scan interval.

In addition, if the memory mappings of the hypervisor do not hold the three proper-
ties (linear mapping, persistence and static nature), the current version of HyperCheck
cannot deal with it. We will try to address these problems in the future.

8 Conclusions

In this paper, we introduced HyperCheck, a hardware-assisted tamper detection frame-
work. Hypercheck is designed to protect the code integrity of software running on com-
modity hardware. This includes VMMs and Operating Systems. To achieve that, we
rely on the CPU System Managed Mode (SMM) to securely generate and transmit the
full state of the protected machine to an external server. HyperCheck does not rely on
any software running on the target machine beyond BIOS. Moreover, HyperCheck is
robust against attacks that aim to disable or block its operation.

To demonstrate the feasibility of our approach, we implemented two prototypes one
using QEMU and another one using an Ethernet card on a commodity x86 machine.
Our experimental results indicate that we can successfully identify alterations of the
control data and the code on many existing systems. More specifically, we tested our
approach in part of the Xen hypervisor, the Domain 0 in Xen, and the control structures
of other operating systems, such as Linux and Windows. HyperCheck operation is rel-
atively lightweight: it can produce and communicate a scan of the state of the protected
software in less than 40ms.
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